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In this paper, we consider a simple stochastic epidemic model on large regular random graphs and the
stochastic process that corresponds to this dynamics in the standard pair approximation. Using the fact that the
nodes of a pair are unlikely to share neighbors, we derive the master equation for this process and obtain from
the system size expansion the power spectrum of the fluctuations in the quasistationary state. We show that
whenever the pair approximation deterministic equations give an accurate description of the behavior of the
system in the thermodynamic limit, the power spectrum of the fluctuations measured in long simulations is
well approximated by the analytical power spectrum. If this assumption breaks down, then the cluster approxi-
mation must be carried out beyond the level of pairs. We construct an uncorrelated triplet approximation that
captures the behavior of the system in a region of parameter space where the pair approximation fails to give
a good quantitative or even qualitative agreement. For these parameter values, the power spectrum of the
fluctuations in finite systems can be computed analytically from the master equation of the corresponding
stochastic process.
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I. INTRODUCTION

Stochastic models on lattices are an old subject in statis-
tical physics, and cluster mean-field theories have been de-
veloped and used both in the context of equilibrium and
nonequilibrium problems �1,2�. These are mean-field ap-
proximations that are formulated in terms of the n-site joint
probabilities. Since for any fixed n the evolution equations
for these probabilities do not in general form a closed set, the
�n+1�-site probabilities are expressed in terms of the lower
order probabilities according to some closure assumption. At
the lowest nontrivial order of truncation, this method corre-
sponds to the well-known pair approximation �PA� according
to which the triplet probabilities p�a ,b ,c� are factorized as
p�a ,b ,c�= p�a ,b�p�c �b�, where a ,b ,c denote lattice nodes’
states and p�c �b� is the conditional probability of having
state c in neighbor of a node in state b. The PA is exact on
the Bethe lattice or Cayley tree, a mathematical model which
cannot be realized as a physical system or simulated compu-
tationally. In finite lattices, in particular in the d-dimensional
regular lattice with first neighbor interactions often consid-
ered in these models, the PA is used as the simplest analytical
description that includes an explicit representation of spatial
correlations. Despite being quantitatively inaccurate, it pro-
vides insight and qualitative information about the system.

More recently, the interest in this approximation proce-
dure shifted from the exploration of conceptual models to its
applications in several problems of population dynamics.
The spread of a virus is an example of a dynamic process
occurring on a discrete spatial arrangement that was modeled
in the traditional literature with the 1-site or mean-field ap-
proximation �MFA� �3,4�. While the MFA reasonably repro-
duces the spreading behavior for topologies where the num-
ber of connections per node is either high or strongly
fluctuating and for those that show small-world features, it is
highly inaccurate for lattice and in general network struc-
tured populations. The PA has become very popular in

lattice-based stochastic models of ecological, epidemic and
evolutionary game dynamics �5–15�, and several modifica-
tions of the PA have been proposed for particular graphs and
dynamic rules that lead to better quantitative agreement
�16–23�. Some of these modifications are based on different
closure assumptions at the level of pairs, while others depend
on including higher order clusters.

By contrast, the PA is expected to perform well, even
quantitatively, for stochastic models on large regular random
graphs �RRGs� which are random networks of fixed connec-
tivity per node, or degree �24�. This is because of the RRG’s
statistical properties, namely the short loop density of the
graph tending to zero in the limit of large graph size �25� so
that a RRG may be seen locally as a Bethe lattice of the same
degree.

In this paper, we consider the susceptible-infective-
recovered-susceptible �SIRS� stochastic epidemic model on
simple RRGs, that is RRGs with no loops formed by one or
two edges. We construct a detailed stochastic model based on
the PA that captures the behavior of this dynamics in finite
systems, in the sense that the power spectrum of the fluctua-
tions computed analytically from the model matches the nu-
merical power spectrum measured along the simulation runs
whenever the averaged dynamics of the densities is well ap-
proximated by the solutions of the PA equations in the ther-
modynamic limit. This happens in a large region of param-
eter space because the quality of the approximation becomes
poor only when the recovery rate is much larger than the rate
of loss of immunity. The coupling between dynamics and
graph structure intervenes in the microscopic description of
the system through the different transitions that it is neces-
sary to consider and the corresponding transition rates.

When recovery is much faster than loss of immunity and
the PA fails in the thermodynamics limit, the cluster approxi-
mation must be carried out beyond the level of pairs. We
show that a triplet approximation �TA� with a standard clo-
sure assumption is adequate to describe the behavior of the
system up to recovery rates two orders of magnitude larger
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than the immunity waning rates. This parameter range is of
interest in applications to childhood infectious diseases
�3,26�. In order to describe the behavior of finite systems in
this region, a detailed stochastic model suitable for RRGs
can be built on the basis of the TA following the procedure
described for the PA.

II. DETERMINISTIC AND STOCHASTIC FRAMEWORKS
IN THE PAIR APPROXIMATION

In this section we propose a stochastic model of the SIRS
epidemic process in the PA. The effects of the inclusion of an
implicit representation of spatial dependence in a stochastic
model have been recently studied �27�. An extension of the
analysis of stochastic fluctuations from nonspatial models to
the case of models on regular structures such as
d-dimensional hypercubic lattices has also been performed
�28�. The present study elaborates on the stochastic models
with implicit spatial dependence by including a detailed mi-
croscopic description of the transitions between the states of
the nodes and the states of the pairs of the nearest neighbors,
that can be treated analytically. The results obtained both for
the averaged dynamics that describes the behavior of the
system in the thermodynamic limit and for the spectrum of
the fluctuations in the quasistationary state of finite systems
agree well with the results of Monte Carlo simulations on
RRGs in a large parameter range. Technically, the PA ap-
proach is quite similar to that previously developed for well-
mixed systems also known as the MFA approach �29� while
having substantial differences which can be easily under-
stood as soon as we review a few facts.

The full set of deterministic equations describing the
SIRS process in the MFA is written in terms of the densities
of susceptible and infected populations �we will equivalently
use the term “probability” in what follows�. These differen-
tial equations are deduced on the assumption of uncorrelated
nodes in the limit of infinite system size and constitute an
approximation for the transient and quasistationary behaviors
of large spatially extended systems. Accordingly, the associ-
ated stochastic model has two classes of individuals, infected
and susceptible, as its independent dynamical variables, and
a particular realization of the model at a given time t consists
of m1 susceptible individuals, m2 infected individuals and
�N−m1−m2� recovered individuals, where N is the total
population size or the number of nodes in a graph.

The deterministic formulation of the SIRS model in the
PA couples the dynamics of the node and pair densities in the
thermodynamic limit. The purpose of the inclusion of pair
densities is to improve the level of approximation in the
description of spatially explicit simulations of the stochastic
model. Consider the stochastic SIRS process on a RRG with
fixed degree per node k �RRG-k� and N nodes. After the
initial distribution of the nodes among the classes of suscep-
tible �S�, infected �I� and recovered �R� individuals, let the
state of the system evolve in time according to asynchronous
update of the events of infection, recovery and immunity
waning. Namely, infected individuals recover at rate

� �I→
�

R�, immunity of recovered individuals ceases at rate

� �R→
�

S�, and infection in the susceptible-infected pairs of

the nearest neighbors occurs with rate � �SI→
�

II�. Each ex-
ecuted event taken separately changes the state of only one
node, has its side effects on the state of the pairs the node
forms with its neighbors, propagates to larger configurations
and finally to the whole graph. Consequently, frequency dis-
tributions or numbers of various correlations present in the
graph, among which pairs are the simplest ones, change. To
construct a stochastic model in the PA the transition prob-
abilities of different events have to be approximated purely
in terms of pairs.

More specifically, to represent independent classes of the
constituents of the stochastic system we can choose five in-
dependent numbers subject to the constraints on the number
of nodes and pairs in the graph. These can be five pair vari-
ables alone, one node and four pair variables or two node
and three pair variables. We shall adopt the last variant so
that taking the limit N→� in the stochastic PA model we
recover the PA-SIRS deterministic equations in the form
given in Ref. �27�. We introduce the following notation for
the independent variables: m1 and m2 are the numbers of
susceptible and of infected nodes and m3, m4 and m5 are the
numbers of susceptible-infected, susceptible-recovered, and
recovered-infected pairs of the nearest-neighbor nodes, re-
spectively, at time t. The full set of the five variables is
denoted shortly as m= �m1 ,m2 ,m3 ,m4 ,m5�. The remaining
variables are not independent. They can be computed from
the constraints as follows:

N = �
�

m�, �1�

km� = �
���

m�� + 2m��, �2�

where m� is the number of nodes in state �, m��=m�� is the
number of pairs of the nearest-neighbor nodes in states
� ,�� �S , I ,R�. In this notation, m1 and m2 equal mS and mI,
and m3, m4 and m5 equal mSI, mSR and mRI, respectively.
Note that in Eq. �2� the factor of 2 comes from the fact that
�� pairs must be counted twice. Further, the number of con-
stituents in the classes, which are now interpreted as classes
of individuals in specific states and classes of fixed contacts
established amongst individuals in specific states, evolves
according to the rule: whichever event is executed, a transi-
tion of one individual between the classes of individuals oc-
curs simultaneously with transitions of the individual’s k
contacts between the classes of contacts. This rule is nothing
else than the statement of the local modifications on a RRG-k
caused by a single event: a change in state of one node in-
duces the simultaneous change in states of the k pairs whose
common member is the node undergoing the transition. The
coarse-grained description where the effect of the change in
state of a given node on the k pairs that it forms is averaged
over each pair type has been given in Ref. �27�. In this study,
we consider a detailed stochastic model in which the k pairs
are, in general, different.
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Next, we calculate the transition rates for the PA-SIRS
stochastic process corresponding to the full microscopic de-
scription and yielding the PA deterministic equations as the
equations of motion for the infinite system size. Consider a

recovery event �I→
�

R� on a RRG-4 as an example. During a
simulation of the stochastic process the rate of this event is
equal to the constant rate of recovery, �, multiplied by the
number of infected nodes at given time, m2. As we keep
track of the changes in states of the pairs formed by the
central node that switches from infected to recovered, we
have to calculate how this net rate is distributed among all
possible configurations the infected node and its first neigh-
bors might form. The configurations with a central node in
state I are accepted as different if they have different number
of pairs mI�, where �� �S , I ,R�, irrespective of their spatial
arrangement. The total number of such configurations for
recovery equals � n+k−1

k �, where n=3 is the number of states
and k=4 is coordination number of the graph.

As it is well known in large sparse RRGs the members of
a pair are unlikely to share neighbors �25,30�. Having no
nodes in common suggests that in the first approximation the
pairs can be considered as independently distributed. In
mathematical formulation it means that the probabilities of
having particular configurations follow a multinomial law
�17�. To be as general as possible we give the conditional
probability of a configuration, shown in Fig. 1, by the for-
mula:

Q��1,�2,�3,�4��� 	 Q

�1

�
�2 − � − �4

�
�3

�
= k ! �

i=1

k
Q��i���m��i

m��i
!

. �3�

Here � ,�i� �S , I ,R� denote states of the five nodes and i
=1, . . . ,k. The number of neighbors to be independently dis-
tributed is k=4. Q��i ��� is the conditional probability that
given a node in state � its nearest neighbor is in state �i,

Q��i��� = 
m��i

km�

if � � �i

2m��i

km�

if � = �i.� �4�

Summation over the states of all pairs present in a given
configuration equals the number of the nearest neighbors:
���i

m��i
=k.

If there are chains of connections between outer nodes of
a configuration, especially short ones, the described method
introduces an error because the pairs can no longer be con-
sidered independent. This is a crucial point that explains the
failure of the standard PA for regular structures characterized
by a huge number of loops of all lengths. For sparse RRGs
with locally treelike structure we assume the pairs to be un-
correlated, so that the probability distribution of a central
node’s neighbors can still be estimated by multinomial Eq.
�3�.

To demonstrate an application of Eq. �3� we choose a
configuration before recovery of the central node shown in
Fig. 2. The probability of this configuration is given by

Q

I

�
I − I − I

�
S

� =
4!

3 ! 1!
Q�I�I�3Q�S�I� =

4�2mII�3mSI

�kmI�4 .

Using Eq. �2� and the notation introduced in the beginning of
this section one obtains

Q

I

�
I − I − I

�
S

� =
4�km2 − m3 − m5�3m3

�km2�4 .

According to Fig. 1, we introduce the total variation of the
number of nodes in state � and of the number of pairs in
state ��i in a graph as the difference between the respective
numbers after and before the central node switches from
state � to another state

�m� = m�
f − m�

i , �m��i
= m��i

f − m��i

i .

In Fig. 2, after recovery of the central node the configuration
changes to that with a recovered node in the center inducing
transitions in pairs of the nearest neighbors. The correspond-

β1

|

β2 — α — β4

|

β3

FIG. 1. Schematic representation of a node in state � and its
nearest neighbors in states �i, where i=1, . . . ,4 and � ,�i

� �S , I ,R�, in a RRG-4.

I

|

I — I — I

|

S

−→

I

|

I — R — I

|

S

FIG. 2. Example of a configuration before and after recovery of
the central node. The total number of recovery configurations is 15.
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ing number variations for the independent variables are
�m1=0, �m2=−1, �m3=−1, �m4=1, and �m5=3. Finally,
we can give the transition rate for a recovery event in the
center of the configuration shown in Fig. 2 as follows:

Tm1,m2,m3,m4,m5

m1,m2−1,m3−1,m4+1,m5+3 = �m2
4�km2 − m3 − m5�3m3

�km2�4 ,

where the subscript and the superscript of T denote the initial
and the final states of the system, respectively.

The other transition rates for events of recovery and im-
munity waning are straightforward modifications of the

above. As for infection process �SI→
�

II� it is considered as
inherent to a pair of nodes because transmission of infection
requires a contact between two individuals, susceptible and
infected. A transition of S node in SI pair from susceptible to
infected changes both the state of this pair and the states of
the other three pairs joining the S node with its three nearest
neighbors which we assume to be independently distributed
in the PA. Thus, Eq. �3� is still applicable with �=S, �4= I,
and i=1, . . . ,k−1,

Q��1,�2,�3�SI� 	 Q

�1

�
�2 − S − I

�
�3

�
= �k − 1� ! �

i=1

k−1
Q��i�S�mS�i

mS�i
!

, �5�

where we have used the closure assumption in the standard
PA, Q��i �SI��Q��i �S�. Now, for instance, the approximate
transition rate for infection within an SI pair of the configu-
ration depicted in Fig. 3 equals

Tm1,m2,m3,m4,m5

m1−1,m2+1,m3−2,m4−2,m5+2 = �m3
3m3m4

2

�km1�3 .

Having calculated all transition rates as described, we are
ready to write the master equation for the PA-SIRS stochastic
process �31,32�

dP�m,t�
dt

= �
m��m

�Tm�
m P�m�,t� − Tm

m�P�m,t�� , �6�

where Tm�
m denotes transition rates from other states m� to

state m and vice versa for Tm
m�. The complete solution of this

differential-difference equation P�m , t� gives the probability
of finding the system in state m for all allowed sets of inte-
gers mi, where i=1, . . . ,5, at time t�0 subject to the initial,
normalization and boundary conditions. In general, it is not
easy to solve this equation analytically but it is quite straight-
forward to analyze it for large but finite N using van Ka-
mpen’s system size expansion �31�. In that spirit, we set

m1�t� = NP�S��t� + �Nx1�t� ,

m2�t� = NP�I��t� + �Nx2�t� , �7�

In both equations, the first macroscopic terms scale with the
system size N. The functions P�S��t�=limN→� m1�t� /N and
P�I��t�=limN→� m2�t� /N are densities of susceptible and in-
fected populations which have to be adjusted so as to satisfy
the deterministic equations of motion in the PA. x1�t� and
x2�t� are the new variables which denote stochastic fluctua-
tions around the corresponding solutions of the PA determin-
istic equations and replace m1�t� and m2�t�, respectively. The
time-dependent transformations �Eq. �7�� from m1�t�, m2�t�
to x1�t�, x2�t� involving functions P�S��t�, P�I��t� come from
the fact that one expects, with respect to the node variables,
the probability distribution function P�m , t� to have a sharp
peak around the macroscopic values m1�t�=NP�S��t�, m2�t�
=NP�I��t� with a width of order of �N, so that the functions
P�S��t�, P�I��t� follow the motion of the peak in time.
Whereas the system involves nodes and pairs as constituent
elements we should carefully define what is meant by sto-
chastic fluctuations around the solutions of the PA determin-
istic equations regarding the pair variables. For the fluctua-
tions of the pair densities we set

m3�t� = NkP�SI��t� + �Nkx3�t� ,

m4�t� = NkP�SR��t� + �Nkx4�t� ,

m5�t� = NkP�RI��t� + �Nkx5�t� . �8�

In the above transformations, the first macroscopic terms are
of order Nk, and the ansatz for the fluctuations scaling with
the system size is �Nk for fixed parameter k �actually, the
scaling of the macroscopic terms in Eqs. �7� and �8� can be
found from Eqs. �1� and �2��. The densities of susceptible-
infected, susceptible-recovered, and recovered-infected pairs
are defined as P�SI��t�=limN→� m3�t� / �Nk�, P�SR��t�
=limN→� m4�t� / �Nk� and P�RI��t�=limN→� m5�t� / �Nk�, re-
spectively.

The large-N expansion is carried out using integer step
operators 	i, where i=1, . . . ,5, that can be expressed as Tay-
lor series involving partial derivatives with respect to the
node and pair fluctuation variables �31�,

R

|

R — S — I

|

I

−→

R

|

R — I — I

|

I

FIG. 3. Example of a configuration before and after infection.
The total number of infection configurations is 10.
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	i = �
n=0

�
1

n!� 1
�N

�n �n

�xi
n if i = 1,2

�
n=0

�
1

n!� 1
�Nk

�n �n

�xi
n if i = 3,4,5.� �9�

With the aid of Eqs. �7�–�9�, master Eq. �6� can be written in
the following form:

d
�x,t�
dt

= �
m��m

��
i

	i
ni − 1�Tm

m�
�x,t� , �10�

where the probability distribution function 
�x , t�	P�m , t�
and ni are integer powers such that:

�
i

	i
niTm

m�
�x,t� = Tm�
m


�x,t� .

The leading terms in the power-series expansion of Eq. �10�
are of order �N. Collecting and setting them to zero yields a
set of five first-order differential equations. These are the
PA-SIRS deterministic equations, see the Appendix for their
explicit form. In next-to-leading order, setting to zero the
terms of order N0, one gets a linear multivariate Fokker-
Planck equation for the probability distribution function

�x , t� �31,32�,

�


�t
= − �

i,j
Aij

��xj
�
�xi

+
1

2�
i,j

Bij
�2


�xi � xj
. �11�

Here x= �x1 ,x2 ,x3 ,x4 ,x5� are stochastic fluctuations of the
node and pair densities about their endemic steady-state val-
ues in the PA. A is the Jacobian matrix of the PA equations
linearized about the endemic equilibrium solution, see for-
mula �A2� in the Appendix. B is symmetric internal noise
cross correlation matrix derived directly from the expansion.

For instance, B12=−�P̄�I�, where P̄�I� stands for the endemic
equilibrium value of the density of infected individuals in the
PA. The difference of the detailed stochastic description from
the coarse-grained description considered in Ref. �27� is re-
flected in the elements of the matrix Bij, where i , j=3,4 ,5.

Since the Fokker-Planck equation is linear, its solution

�x , t� is a multivariate Gaussian distribution completely de-
termined by the first and the second moments. However, to
analyze the fluctuations it is convenient to use the equivalent
linear multivariate Langevin equation for xi�t� �31,32�,

ẋi�t� = �
j

Aijxj�t� + Li�t�, i, j = 1, . . . ,5. �12�

Li�t� are white random noise terms with the following prop-
erties:

�Li�t�� = 0,

�Li�t�Lj�t��� = Bij��t − t�� . �13�

The structure of the noise xi�t� as function of angular fre-
quency � is found from the power spectrum of the normal-
ized fluctuations �PSNF� denoted as the averaged squared
modulus of the Fourier transform of xi�t�,

Pi��� 	 ��x̃i����2� , �14�

where

x̃i��� =
1

�2�
�

−�

+�

xi�t�e−i�tdt . �15�

Solving for the Fourier transforms from the linear Eq. �12�
and using the correlation function in the frequency domain

�L̃i���L̃j�����=Bij���+���, the approximate analytical ex-
pression for the PSNFs about the endemic equilibrium solu-
tion of the PA equations becomes

Pi��� = �
j,k

Mik
−1���BkjMji

−1�− �� , �16�

where Mij���=i��ij −Aij. The PSNF of the susceptibles �of
the infectives� is then obtained by setting i=1 �i=2, respec-
tively�. In this case, the PSNFs are of the form p��� /q���,
where p��� and q��� are polynomials in � of order 8 and 10,
respectively. Note that the same formula �Eq. �16�� is also
valid for the PSNFs in the MFA taking A as the Jacobian of
the MFA-SIRS differential equations linearized about the
mean-field endemic equilibrium solution and the noise cross
correlation matrix B computed directly from the expansion.

Figures 4 and 5 compare results of the theory developed
so far with data of the SIRS stochastic model obtained from
Monte Carlo simulations on a RRG-4. The RRGs are gener-
ated using a quick algorithm introduced in Ref. �33�. The
algorithm guarantees that for small degrees at least, which is
the case here, the RRG-k on N nodes is generated uniformly
at random, in the sense that all RRG-k on N nodes have
asymptotically the same probability as N→�. In the stochas-
tic simulations, the system is set in a random initial condition
with fixed node and pair densities, after which the states of
the nodes are updated asynchronously according to the
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FIG. 4. �Color online� Densities of the infectives and of the
susceptibles in the PA �gray �green� lines� and averaged numerical
time series �black lines� obtained from Monte Carlo simulations of
the SIRS stochastic model on a RRG-4 with N=106 nodes. All plots
were obtained for �=1, �=2.5 and k=4. Parameters: �a� and �b�
�=0.09; �c� and �d� �=0.04.
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events of infection, recovery and loss of immunity. Figure 4
shows averaged or global behavior of the densities as ob-
tained from many runs of numerical simulations, namely for
each set of given parameter values and initial conditions the
simulations are averaged over 103 realizations of a RRG.
Figure 5 analyzes the fluctuations about the steady-state den-
sities observed in an individual run. More precisely, we com-
pute the PSNFs in 1.5103 parallel long simulation runs on
RRGs numerically, and then we average. In both figures, the
same parameter values in the endemic phase are used in the
corresponding panels to ease a comparison of the results.
Note that on a finite graph, the only true steady state of the
SIRS process corresponds to all nodes being in susceptible
state, that is why the steady states of the PA model are com-
pared with the quasistationary states of large but finite sys-
tems.

Plots in Fig. 4 show susceptible and infective densities as
function of time. Numerical solutions of the PA deterministic
equations given in the Appendix are plotted in gray �green�.
Black lines are sample averages of the densities as obtained
from 103 realizations of a RRG-4 with N=106 nodes. For the
SIRS model the agreement of the solutions of the PA deter-
ministic equations with the averaged dynamics on RRGs is
sensitive to the rate of immunity waning �, viz it deteriorates
with decreasing � �34�. The upper panels in Fig. 4 are plotted
for a set of parameter values for which the solutions of the
PA equations reproduce the behavior of the averaged times
series on a RRG-4 with a good accuracy both in the transient
and in the quasistationary regime. The lower panels in Fig. 4
plotted for a smaller value of � with the other parameters

being fixed reflect the striking difference in the dynamics of
the simulations �black lines� and of the PA deterministic
model �gray �green� lines�. Although the steady-state values
of the densities are close, during the transient period the
averaged time series attenuate more rapidly in the numerical
simulations than the damped oscillations predicted by the
PA.

Plots in Fig. 5 are the approximate analytical PSNFs �gray
�green� lines� given by formula �16� and the averaged nu-
merical PSNFs �black lines� calculated from 1.5103 repli-
cate simulation runs of the SIRS process on a RRG-4 with
N=106 nodes. The upper panels in Fig. 5 plotted for param-
eter values used in the upper panels in Fig. 4 show the agree-
ment between the analytical and numerical PSNFs of the
susceptibles and infectives. The analytical PSNFs �Eq. �16��
deduced from the detailed stochastic PA model with the tran-
sition rates calculated on the basis of Eqs. �3� and �5� ap-
proximate the averaged numerical PSNFs well in those re-
gions where the PA deterministic model predicts the same
behavior as that of the times series obtained from the simu-
lations averaged over many realizations. In this region, the
typical PSNF is a bell-shaped curve indicating that in an
individual simulation run susceptible and infective densities
oscillate in time with frequencies close to the principal fre-
quency demarked by the maximum of the curve. In fact, the
large oscillations of the densities are due to a kind of internal
resonance previously studied for a nonspatial predator-prey
model �29�. In the lower panels in Fig. 5 the amplitude of
both the analytical and the numerical PSNFs gets much
higher, indicating that for smaller values of � the stochastic
fluctuations become more pronounced and better structured.
The fact that the numerical PSNFs lie significantly below
those predicted analytically is closely related to the stability
of the endemic equilibrium of the PA equations. As � de-
creases the equilibrium’s stability gets weaker until it is lost
on a critical line corresponding to a supercritical Andronov-
Hopf bifurcation �27�. Accordingly, the approximate analyti-
cal PSNFs become more and more enhanced until they fi-
nally diverge on the critical line. Note that in the lower
panels in Fig. 4 plotted for the same parameters the behav-
iors of the analytical and numerical global densities do not
agree too.

A good correspondence and subsequent divergence be-
tween the analytical and numerical PSNFs can be understood
from the van Kampen’s large-N expansion about the endemic
equilibrium performed above. The analytical expression for
the PSNFs, see formula �16�, is a function of � and constant
matrices A and B whose elements are expressed in terms of
the basic parameters of the model �, �, �, and k. In the
general theory developed in Ref. �31�, the matrices can de-
pend on time through the node �P�S� , P�I�� and pair
�P�SI� , P�SR� , P�RI�� densities. However, as we are inter-
ested in the analysis of the fluctuations in the endemic equi-
librium we have to substitute for the node and pair variables

their stationary values �P̄�S� , P̄�I� , P̄�SI� , P̄�SR� , P̄�RI�� de-
pending on the parameters. This substitution results in time-
independent coefficient matrices A and B. It follows that the
agreement between the analytical and numerical PSNFs is
expectable in the regions where the PA deterministic model
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FIG. 5. �Color online� Analytical PSNFs of the infectives and of
the susceptibles in the PA �gray �green� lines� and averaged numeri-
cal PSNFs �black lines� calculated from Monte Carlo simulations of
the SIRS epidemic process on a RRG-4 with N=106 nodes. All
plots were obtained for �=1, �=2.5 and k=4. Parameters: �a� and
�b� �=0.09, lin-lin plot; �c� and �d� �=0.04, lin-log plot.
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approximates the transient and quasistationary global dy-
namics on RRGs quite well. We emphasize that although the
coarse-grained stochastic model considered in Ref. �27� ex-
hibits the same qualitative behavior as the detailed model
described here, the quantitative agreement between the cor-
responding PSNFs is not achieved in that case. Therefore,
the detailed microscopic description is needed to approxi-
mate the exact stochastic dynamics on RRGs. Moreover, tak-
ing into account the above analysis it now becomes clear that
resorting to higher order cluster approximations is necessary
to describe the behavior of the SIRS stochastic model on
RRGs for small �.

III. DETERMINISTIC AND STOCHASTIC FRAMEWORKS
BEYOND THE PAIR APPROXIMATION

As mentioned in the previous section, in Ref. �34� we
have compared the data of the SIRS stochastic process ob-
tained from Monte Carlo simulations on RRGs with the so-
lutions of the standard PA equations and have shown that the
PA describes correctly the global behavior of the model in
the limit where rate of immunity waning ��1 but it fails to
capture the dynamics for ��1. The question is then whether
a cluster approximation of the next order can explain the
suppression of global oscillations predicted by the PA for �
�1 and, in particular, whether it can describe stationary
states correctly. A reasonable description of the endemic
equilibria as well as of the phase diagram of the stationary
state calculated from numerical simulations is obtained by
extending the generalized cluster approximation procedure to
combinations of three neighboring nodes or triplets for short.

In this section, we address this question and more gener-
ally the problem of the construction of cluster approxima-
tions of the order q higher than two, that is higher than the
PA. As a matter of fact, for the SIRS process the time evo-
lution of the q-node joint probabilities is governed by a set of
first-order differential equations expressing their time deriva-
tives as linear combinations of q- and �q+1�-node joint prob-
abilities. This is due to the infection process involving two
nodes, susceptible and infected, simultaneously. In order to
proceed the set of equations must be closed. In the standard
cluster approximation the �q+1�-node joint probabilities are
rational functions of the joint probabilities of smaller clusters
of neighboring nodes, appropriately normalized, and thus the
full set of first-order differential equations can be obtained.

Within this perspective the PA is a standard cluster ap-
proximation for q=2. The TA is obtained for q=3 in a
straightforward way by keeping node, pair and triplet prob-
abilities as independent variables and expressing quadruplet
probabilities in terms of them. We remind that each equation
for the probability evolution of a particular cluster configu-
ration is derived by considering all transitions leaving or
entering it. Using the notation of the Appendix, in the TA of
the SIRS process the equation for, for example, P�RI��t�
reads as

dP�RI�
dt

= �P�II� − �� + ��P�RI� + ��k − 1�P�RSI� .

The first term on the right-hand side is due to the transition
of II pairs to RI pairs occurring at rate �. The second

�third� term corresponds to recovery �loss of immunity� of
I �R� node in RI pairs that transit to RR �SI� pairs at rate
� ���. Finally, a triplet RSI changes to RII with rate � such
that a pair RS is changed to RI. Since S node of RS pair has
�k−1� free neighbors that can infect it, this factor is included
in the fourth term of the equation. Keeping again the same
node �P�S� , P�I�� and pair probabilities �P�SI� , P�SR� ,
P�RI�� as independent variables the equation can be written
in the following form:

dP�RI�
dt

= ��P�I� − P�SI�� − �2� + ��P�RI� + ��k − 1�P�RSI� .

The equations for triplet probabilities are obtained in a
similar way. In general, as far as clusters of more than two
neighboring nodes are concerned, these split into two distinct
classes, open and closed, and both have to be taken into
account by considering the probabilities of finding an open
and a closed configuration separately. By definition, an open
cluster of a given size does not contain any loop while a
closed cluster, on the contrary, necessarily contains at least
one loop. Thus, for example, a triplet cluster can be closed
forming a triangle or open forming a linear chain of three
nodes. However, the number of short loops is small for large
RRGs with small k �25�. For instance, the analytical esti-
mates for the mean Nl and variance Var�Nl� of the number of
loops of length l=3,4 in a RRG-4 in the thermodynamic
limit are N3=Var�N3�=4.5, N4=Var�N4�=10.125 �30�. The
RRGs with k=3 are even more sparse, so that the number of
short loops is even smaller. Based on these results we neglect
the presence of small closed clusters in RRGs. Thus in the
TA of the SIRS process, we complement Eq. �A1�, see the
Appendix, in which the probabilities of the triplets will be
retained, with the equations for the triplet probabilities con-
sidering only open clusters of neighboring nodes. For in-
stance, using the transition rules of the SIRS process the
evolution equation for the probability P�RRI� of finding a
random triplet in state RRI becomes

dP�RRI�
dt

= ��P�RII� + P�IRI� − P�RRI�� − 2�P�RRI�

+ ��k − 1�P�RRSI� ,

where P�RRSI� is the probability of an open linear quadru-
plet in state RRSI. The deduction of other triplet equations is
straightforward.

To write the final closed set of differential equations in the
TA we have: �a� to choose independent triplet variables
whose number is reduced due to basic conservation relations;
�b� to approximate quadruplet probabilities in terms of the
node, pair and triplet ones.

We discuss these two questions by order. With the use of
probabilistic relations

P���� = �
�

P����� = �
�

P����� �17�

and reflection symmetries
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P����� = P����� , �18�

where � ,� ,�� �S , I ,R�, the number of independent triplet
variables yields 9 and thus the total number of the TA equa-
tions is 14. Note that in finite RRGs the probability of triplets
at given time equals

P����� = 
m���

k�k − 1�N
if � � �

2m���

k�k − 1�N
if � = � ,� �19�

where we used the obvious notation for triplets. In this case,
the factor of 2 is due to double counting of ��� triplets.
From Eqs. �17�–�19�, the constraints on the number of pairs
and triplets of the following type can be found �compare
with Eqs. �1� and �2��:

�k − 1�m�� = �
���

m��� + 2m���. �20�

A closer inspection of the equations for the triplets shows
that probabilities of two types of open quadruplet configura-
tions occur: linear quadruplets as in Fig. 6�a� and “T-like”
quadruplets as in Fig. 6�b�. Note that open triplet configura-
tions can only be linear. With the assumption of uncorrelated
triplets, linear quadruplets are approximated as follows. The
joint probability of a quadruplet in state ���� equals the
joint probability to find a triplet in state ��� multiplied by
the conditional probability to have a node in state � neigh-
boring with ��� triplet:

P������ = P�����Q������� . �21�

Neglecting the influence of � node on � node, the distribu-
tion of � nodes in the neighborhood of ��� triplets is ap-
proximately equal to that in the neighborhood of �� pairs,

Q������� � Q������ . �22�

Substitution of Eq. �22� into Eq. �21� yields the closure as-
sumption for linear quadruplets in the standard TA,

P������ =
P�����P�����

P����
. �23�

Note the resemblance of Eq. �23� with the closure assump-
tion for open triplets in the standard PA,

P����� =
P����P����

P���
. �24�

In both formulas the product of the probabilities �of pairs in
the PA and triplets in the TA� is divided by the probability of
the configuration in which they overlap �a node and a pair,
respectively�. Reasoning in the same way, a closure assump-
tion for a “T-like” cluster depicted in Fig. 6�b�, can be ob-
tained. For example, considering a pair in state �� as the
overlapping configuration the probability a “T-like” quadru-
plet becomes

P����
�

� =
P�����P�����

P����
. �25�

Clearly, this closure assumption is not unique as any of the
three pairs ��, ��, and �� joining in the node � is suitable
as an overlapping configuration. However, they all coincide
in the limit when triplets are considered to be formed by
uncorrelated pairs:

P����
�

� =
P����P����P����

P���2 . �26�

Notwithstanding the closure assumption for “T-like” qua-
druplets, Eq. �25�, is not unique it includes more information
since the probability of a quadrupet is expressed in terms of
the probabilities of triplets and pairs, unlike Eq. �26� where
the same probability depends on the probabilities of pairs
and nodes. There is no a priori reason that the TA model with
Eq. �25� should give a better approximation to Monte Carlo
simulations than the same model with Eq. �26� and direct
numerical calculation of the distribution of nodes, pairs, trip-
lets and quadruplets in the simulations is required to check
this point. However, indirect evidence of this comes from the
comparison of the TA model with both types of closure as-
sumptions for “T-like” quadruplets and the stochastic SIRS
process on RRGs in the regions where the PA model fails.
We have found that the closure assumption given by Eq. �25�
gives a quantitative improvement over the closure given by
Eq. �26� both for the stationary and for the time-dependent
behaviors when it is faced with the exact stochastic dynamics
on RRGs. Qualitatively, the behavior of both TA models is
similar. For k=4 no stable oscillatory behavior is observed
for small �, and for k=3 the oscillatory phase becomes much
smaller than in the PA model. The only difference we have
been able to identify without performing the full linear
analysis and calculating the whole phase diagrams of the TA
deterministic models is that in the TA model with Eq. �25�
the oscillations are suppressed faster than in the same model
with Eq. �26�, making the former model a better approxima-
tion for the global behavior observed in the simulations on
RRGs.

In Figs. 7 and 8 we compare the three models of the SIRS
process, namely the TA-SIRS model with the closure as-
sumptions for linear and “T-like” quadruplets given by Eqs.
�23� and �25� �solid gray �green� lines�, the PA-SIRS model
given in the Appendix �dashed black �blue� lines� and the
results of stochastic simulations �solid black lines� on RRGs
with k=3 and k=4, respectively. In the plots where the solid

a)

α — β — χ — ξ

b)

α — β — χ

|

ξ

FIG. 6. �a� Linear and �b� “T-like” quadruplets both belong to
the class of open quadruplet configurations, i.e. clusters of four
nodes that do not contain any loop.

G. ROZHNOVA AND A. NUNES PHYSICAL REVIEW E 80, 051915 �2009�

051915-8



black lines cannot be distinguished they are superimposed by
the solid gray �green� lines. The differential equations were
integrated numerically using the 4th order Runge-Kutta al-
gorithm, and for each set of initial conditions and parameters
the simulations were averaged over an ensemble of 103

RRGs of given degree with N=106 nodes. The properties of
the fluctuations around this averaged behavior are described
by the numerical PSNFs. For all parameter values considered
below these numerical PSNFs are resonantlike as in Fig. 5.

In Fig. 7 the evolution of susceptible �left panels� and
infective �right panels� densities as a function of time is
shown for three sets of parameter values that correspond to
constant infection rate �=15 and decreasing rate of immu-
nity waning �=2,0.2,0.05 �from top to bottom�. The values
of the parameters are chosen so as to reflect the behavior of
the models in three different phases in the endemic region of
the phase diagram of the PA model �34�. As regards the
asymptotic behavior of the PA-SIRS equations, these phases
are associated with the asymptotically stable nodes, asymp-
totically stable foci and limit cycles �from top to bottom�. In
the upper panels for the typical value �=2 we used, the
steady state of the system is a stable node both for the PA and
for the TA model. The solutions of both deterministic models
are almost coincident with the averaged densities obtained
from the stochastic simulations for this whole region. The
agreement between the deterministic models deteriorates in
the region where both predict a behavior corresponding to a
stable focus as can be seen in the middle panels where we
used �=0.2. The steady state of the PA equations is different
from the quasistationary state observed in the simulations
while the TA model describes the dynamics accurately both

in the transient and in the steady-state regime. The bottom
panels with �=0.05 illustrate that in the region where the PA
model exhibits stable oscillatory behavior both the TA solu-
tions and the simulation trajectories show damped oscilla-
tions towards a nontrivial equilibrium. The steady-state den-
sities given by the TA equations and the quasistationary
densities calculated from the stochastic simulations on a
RRG-3 are equal. However, in the transient regime we ob-
serve that the trajectories approach the steady state in a
slightly different manner demonstrating a higher damping in
the stochastic simulations. Also, for k=3 the oscillatory
phase still persists in a very small region in the endemic
phase in the TA but once more this result is not confirmed by
the simulations for the same parameter values �results not
shown�. Sustained oscillations, instead of resonant fluctua-
tions, would show up as multiple peaks in the numerical
PSNFs, which are not observed. This suggests that a com-
plete description of the global behavior of the SIRS on a
RRG-3 requires even more elaborate approximations and
that the global oscillations predicted by both the PA-SIRS
and the TA-SIRS in the thermodynamic limit are an artifact
of the models.

Fig. 8 illustrates the data as in Fig. 7 with �=2.5, and �
=2.5,0.1,0.025 �from top to bottom� for k=4 and RRG-4.
These values are chosen as before to represent the different
phases of the PA diagram associated with the asymptotically
stable nodes, asymptotically stable foci and limit cycles
�from top to bottom�. We observe the same comparative be-
havior of the models as � decreases. The only difference is
that in the case of k=4 the oscillatory behavior in the TA has
not been identified. Everywhere in the region of stable oscil-
lations predicted by the PA model, the TA model reaches the
steady state through damped oscillations that are associated
with the existence of a stable fixed point, namely a stable
focus. Such a dynamics of the TA-SIRS model is confirmed
by the results of the simulations, see the bottom panels in
Fig. 8.
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FIG. 8. �Color online� The same data as in Fig. 7 with �=1, �
=2.5 for k=4 and RRG-4 with N=106 nodes. Parameters: �a� and
�b� �=2.5; �c� and �d� �=0.1; and �e� and �f� �=0.025.
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FIG. 7. �Color online� Time evolution of susceptible �left pan-
els� and infective �right panels� densities for parameter values in the
endemic region of the phase diagram of the PA model as predicted
by the TA model �solid gray �green� lines�, the PA model �dashed
black �blue� lines� and the results of stochastic simulations �solid
black lines� on a RRG-3 with N=106 nodes. All plots were obtained
for �=1, �=15 and k=3. Parameters: �a� and �b� �=2; �c� and �d�
�=0.2; and �e� and �f� �=0.05.
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Regarding the fluctuations, the same procedure that was
used in the previous section to derive an approximate ana-
lytical expression for the PSNFs based on the PA can be
extended to the TA in the region where the PA model fails.
An explicit construction of a detailed stochastic TA model is
cumbersome but straightforward, and once the master equa-
tion is written down the analytical PSNFs can be computed
using van Kampen’s system size expansion and then general
formula �16�. According to the results for the PA model, we
expect the analytical PSNFs obtained in this way to approxi-
mate well the numerical power spectra in the parameter re-
gions of the middle panels in Fig. 7. We also expect a fair
approximation in the parameter regions of the bottom panels
of the same figure.

IV. DISCUSSION AND CONCLUSIONS

The standard PA is known to perform poorly for lattice-
based stochastic models but it gives in general good results
for large RRGs due to the local treelike structure of these
graphs. Taking a simple epidemic model as an example, we
have used the PA to derive the master equation of the corre-
sponding stochastic process on a RRG and an approximate
analytical expression for the power spectrum of the fluctua-
tions in the quasistationary state.

We have checked the agreement of the analytical power
spectrum in the PA against numerical simulations and found
that whenever the behavior of the system in the thermody-
namic limit is well described by the PA deterministic equa-
tions, the analytical power spectrum also describes accu-
rately the fluctuations observed in long simulations.

This happens in a large region of parameter space. How-
ever, as � approaches the phase boundary �=0 the quality of
the PA deteriorates, and it is necessary to switch to higher
order cluster approximations in order to obtain even qualita-
tive agreement between the model equations and the simula-
tions. We have shown that a TA with a standard closure as-
sumption yields an accurate description of the behavior of
the system in the thermodynamic limit in a � range where the
PA breaks down. For finite systems, the fluctuation power
spectrum can be computed analytically as before from the
master equation of the stochastic process that corresponds to
the TA.

For small values of �, long simulations require very large
system sizes. For the smallest � we have explored we found
indications of the breakdown of the TA, and that clusters of
order higher than three would have to be considered. As the
order of the cluster approximation increases, however, the
’no loop’ assumption that is an ingredient of the construction
of the detailed stochastic model becomes less accurate. Ex-
tension of this method to smaller values of � through higher
order clusters would have to be combined with more com-
plicated closure assumptions.

The parameter range explored in this paper is relevant to
childhood infectious diseases modeling. Published estimates
for the epidemiological parameters of measles, whooping
cough, rubella and chicken pox, see Ref. �3�, correspond in
the SIRS model to � in the range 0.003�0.02 assuming that

the average immunity waning period can be taken as the
typical duration of basic school. Our results show that the
oscillatory phase that implicitly spatial models such as the
PA-SIRS and the TA-SIRS exhibit in the thermodynamic
limit cannot be directly related with the recurrent epidemic
peaks found in many data sets �3,26�. However, they also
show that once stochastic effects are taken into account, the
model predicts a well defined bell-shaped high amplitude
fluctuation spectrum reproducing the qualitative features of
typical time patterns of real data for this class of endemic
diseases.
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APPENDIX

Throughout the main text the node and pair probabilities
are denoted as P��� and P����, where the small Greek let-
ters stand for states S, I, and R. We extend this notation for
open linear triplet and quadruplet probabilities, P����� and
P������, respectively, while in the probabilities of open “T-
like” quadruplets the clusters are depicted explicitly.

Substituting P�����= P����P���� / P��� in the set below
yields the PA-SIRS deterministic equations �27�,

dP�S�
dt

= ��1 − P�S� − P�I�� − k�P�SI� ,

dP�I�
dt

= k�P�SI� − �P�I� ,

dP�SI�
dt

= �P�RI� − �P�SI� − �P�SI� + ��k − 1��2P�SSI�

+ P�RSI� − P�SI�� ,

dP�SR�
dt

= �P�SI� − ��k − 1�P�RSI� + ��1 − P�S� − P�I�

− P�RI� − 2P�SR�� ,

dP�RI�
dt

= ��P�I� − P�SI� − 2P�RI�� − �P�RI�

+ ��k − 1�P�RSI� . �A1�

The steady-state solutions of the PA-SIRS equations can be

obtained analytically. Let P̄�S�, P̄�I� and P̄�SI�, P̄�SR�, and

P̄�RI� denote the endemic steady-state values of the node and
pair densities of the PA-SIRS model, then the Jacobian ma-
trix A of the linearized system is written as
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A =

− � − � − k� 0 0

0 − � k� 0 0

C0C2 0 C3 −
C1

P̄�SR�
�

− � + C0 − � � −
C1

P̄�SI�
− 2� −

C1

P̄�SR�
− �

− C0 � − � +
C1

P̄�SI�

C1

P̄�SR�
− � − 2�

� , �A2�

where we introduced the constants

C0 =
�k − 1��P̄�SI�P̄�SR�

P̄�S�2
,

C1 =
�k − 1��P̄�SI�P̄�SR�

P̄�S�
,

C2 = 1 + 2
P̄�SI�

P̄�SR�

and

C3 = �k − 2�� − � − C1� 1

P̄�SI�
+

4

P̄�SR�
� .

In the TA of the SIRS process, we complement Eq. �A1� in
which the probabilities of the triplets are retained with the
equations for the triplet probabilities as described in the main
text.
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